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ABSTRACT 

The Government's High Performance Computing and Communications initiative 
has reached the stage where it is now important to demonstrate realistic appli- 
cations on scalable massively parallel processors (MPPs). Real-time embedded 
applications on MPPs will require high sustained processing rates, high sustained 
message passing rates, real-time services at the processing nodes, and real-time 
internode communication services. Based on our current practical and theoretical 
investigations we conclude that the last of these requirements currently poses the 
most significant risk in the transitioning of programmable MPP technology to 
real-time embedded applications. MITRE is currently developing a scalable solu- 
tion to the real-time communications problem for MPPs. This paper frames the 
communications scheduling problem, describes MITRE's approach and progress 
so far, and assesses priorities for future work in this area. 



PREFACE 

This is one of three MITRE Technical Reports documenting work performed 
during Fiscal Year 1994 on MITRE Project 74110, Real-Time Embedded High 
Performance Computing. The complementary reports are 

• Real-Time Embedded High Performance Computing: Application Bench- 
marks, MTR 94B145, by Curtis P. Brown, Mark I. Flanzbaum, Richard 

A. Games, and John D. Ramsdell, and 

• Parallel Implementation of the Planar Subarray Processing Algorithm, 
MTR 94B114, by Richard A. Games and Daniel S. Pyrik. 

In addition, this document reports on work during the same fiscal year on MITRE 
Project 820W, Real-Time Communications Scheduling, which was initiated in the 
summer of 1994 to concentrate on the subjects covered here. 
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SECTION 1 

INTRODUCTION 

The process of specifying, designing, manufacturing, and supporting complex 
digital systems, particularly real-time embedded signal and data processors, must 
change greatly if future system requirements are to be met within shrinking 
military budgets. High performance computing can play a significant role in 
the rapid production of military systems with reduced life-cycle costs. If the 
computational requirements of current and future real-time embedded systems 
can be satisfied by emerging programmable massively parallel processors (MPPs), 
then costly application-specific processors and disparate data processors can be 
replaced by a single homogeneous, scalable, programmable computing platform 
that is designed to be able to take advantage of the roughly foreseeable progression 
of commercial technology. 

There have been significant advances in hardware technology that make such 
a high performance computing solution possible: processing, I/O, and memory 
capabilities are continuing to improve. The packaging problems associated with 
embedded applications are currently being addressed by a variety of ARPA and 
industry research and development programs. In particular, the ARPA-Honeywell 
Embedded Touchstone program is producing an embeddable high performance 
computer that incorporates commercial microprocessors running the same system 
and application software as its commercial counterpart, the Intel Paragon. 

However, software technology for high performance computing has been lagging. 
There is a general perception in the user community, especially in industry, that 
there is a need for improved programming environments and tools for distributed 
memory massively parallel processors. However, this is not our concern here as 
there are potentially more serious show stoppers in the case of embedded appli- 
cations. These applications have requirements not found in large-scale scientific 
computing such as the need for real-time processing, multi-level security, and 
fault tolerance. In this paper we focus on applications that have hard real-time 
requirements. Results must be computed by strict deadlines or they lose their 
value, potentially causing catastrophic system failure. Specialized system software 
is needed to provide such hard real-time guarantees. 



1.1 THE COMMUNICATIONS SCHEDULING GAP 

Four noteworthy prerequisites for a successful real-time embedded MPP imple- 

mentation are 

1. high sustained processing rates, 

2. high sustained message passing rates, 

3. real-time services at the processing nodes, and 

4. real-time internode communication services. 

Here they are ordered according to our assessment of the magnitude of associated 

risk, starting with the least risky. 

High sustained processing and message passing rates will be needed to minimize 
the size, weight, and power requirements of the embedded processor. At those 
nodes where processing is intense, and on heavily used data channels, we believe 
these rates need to be and can be considerably higher than the small percentages 
that are sometimes accepted. We have in mind the goal of achieving at least 50% of 
advertised peak rates as a rule of thumb, although this goal is complicated by the 
probability that the mapping of the algorithm will require periods of quiescence. 

We expect that optimized library routines and the emerging "lightweight" message 
passing techniques will be able to provide the necessary efficiencies for the first 
two requirements above (Brown, 1994). This is especially true if the software 
developer is prepared to invest the effort that is typically involved with present 

embedded processors. 

But just obtaining efficiency and speed does not guarantee real-time performance, 
which has more to do with predictability. This realization applies both to process- 
ing and to communication. On the processing side it has already motivated the 
development of real-time operating systems. For example, commercial real-time 
operating systems, such as VxWorks, PSoS, LynxOS, have been ported to many 
of today's microprocessors and incorporate the hard real-time scheduling theory 
developed throughout the 1980s. These operating systems are well understood 
by the embedded computing community and hopefully can be streamlined to 
provide the basic services required in a pragmatically selected near-term demon- 
stration. More general solutions are under development. ARPA/CSTO is funding 



Honeywell and the Open Software Foundation to provide real-time extensions to 
Mach, which then can be incorporated into the operating system of the Embedded 
Touchstone. We feel overall that the risk associated with the third prerequisite, 
obtaining real-time performance on a single processing node, is also manageable, 
although there will be added difficulties associated with multiprocessor nodes. 

Internode communication lies at the heart of the scalable MPP concept. Even in 
the simplest paradigm, which imagines dividing a large problem into iV parts to 
be solved on N processing nodes independently, the input data must be communi- 
cated to the various processors, and their results must usually be accumulated for 
at least rudimentary further processing. An important motivating phenomenon 
comes into play when there is a second stage of processing that is also parceled 
out to N nodes, such that each of the second stage subproblems requires some 
data from each of the first stage partial answers. At least (iV - l)2 unidirectional 
data transfers are necessary in this case, which corresponds to a "corner turning" 
common in signal processing. But each transfer is probably of smaller size than 
in the first stage distribution. What is clear is that an evaluation of the overall 
communication problem needs to consider offsetting factors, including the con- 
nection topology and other aspects of the hardware architecture and underlying 
software. As N gets large, the scaling of the processing is conceptually simpler 
than the scaling of the communication. 

An overall solution to the problem of building real-time scalable MPP applications 
must have a component that provides guaranteed real-time internode communi- 
cation performance. This component may be conceptual and may not require 
elaborate extra software. It is possible that for many individual cases a careful 
analysis of the applications software, together with a supporting theory of very 
limited scope, will suffice. Convincing scalable methods of analysis sufficient even 
for individual applications are currently wanting. In the longer term, a more 
general and easier to apply real-time communications scheduling facility is highly 
desirable, just as it is desirable to go beyond hand-crafted solutions to the schedul- 
ing problem for complex systems on a single processor. 

No real-time communications scheduling component is included in existing real- 
time operating systems. It is also important to note that techniques developed 
for network applications where only statistical or other relatively "soft" real-time 
guarantees are required, although suggestive, may not be adequate for hard real- 
time applications. This limitation is significant even though it may not always be 
possible to make an absolutely sharp distinction between hard and soft real-time 

requirements. 



It is the real-time communications scheduling requirement that currently poses 
the most significant risk standing in the way of transitioning programmable MPP 
technology to real-time embedded applications. 

1.2 COMMUNICATIONS SCHEDULING 

We are currently developing an approach to solving the communication scheduling 
problem for scalable MPPs. In order to get a concrete understanding of realistic 
requirements and to achieve early demonstrable progress, we are initially empha- 
sizing the class of signal processing applications. But we are also being extremely 
careful not to tie ourselves down by this initial selection, and we are keeping more 
general problems in mind in all phases of the work. It is an important research 
question just how generally applicable a communications scheduling facility can 
be, just as it is with hardware architectures, operating systems, etc. 

The hard real-time computing research community has begun extending their work 
to distributed implementations, but the work to date has focused either on packet 
switched wide-area networks, such as the Internet, or on local-area networks, such 
as FDDI. Assumptions of intelligent routers and relatively long latencies interfere 
with the applicability of much of this work to MPP backplanes, but some aspects, 
such as the protocols suggested for local-area networks, may well play a role in 
the solution. 

What will an MPP communications scheduling solution look like? As in the case 
of process scheduling for a sequential real-time system, there will be two parts: 

1. algorithms and protocols, etc.   that can be (and are) implemented on 
various machines to provide adequate real-time communications, and 

2. an overall analytical framework that enables us to state guarantees and 
easily build, modify, and compare systems. 

We do not want to assume that the need for communications scheduling will 
be high on the list of considerations in the design of computer architectures or 
operating systems, although in the long run some influence might be possible. 
The pragmatic strategy characteristic of our approach requires us, at one end, 
to define performance parameters for the combinations of hardware and support 
software under consideration that are really measurable or predictable with a high 
degree of confidence and that are informative enough to feed into the rest of the 



theory. Thus the simplistic concept of message passing rates is inadequate at least 
because it does not tell us much about how the data communications network, 
including the relevant software at the nodes, will behave under more complex 
circumstances (see also Section 3.4). 

At the other end we must define requirements parameters that adequately express 
the communications needs of target applications. These would be analogous to 
the parameters associated with sets of periodic tasks that are used in the estab- 
lished theory of single resource scheduling. Scheduling algorithms and protocols, 
mechanisms for implementing them, and appropriate mathematical analysis must 
also be developed to justify a translation of applications requirements into perfor- 
mance parameters for the hardware and support software that we can guarantee 

are sufficient. 

An attractive approach that we are exploring is to divide up the MPP back- 
plane (or, better, the use of the backplane) either spatially or temporally or both 
to reduce the communication scheduling problem to smaller resource contention 
problems that can be handled by simple adaptations of known techniques. This 
reduction may be in more than one stage. A key element of this "network subdivi- 
sion" approach is its explicit willingness to pay a reasonable price in efficiency to 
achieve the predictability that such a reduction provides. The associated analyt- 
ical frameworks for each of the pieces must be integrated to obtain an analytical 
framework for the entire backplane. This integration may be facilitated by our 
suggested revision of demand notions. The network subdivision idea will be dis- 

cussed in more detail in Section 3. 

1.3 REPORT ORGANIZATION 

In Section 2 we describe in more detail the issues and the current state of the 
art for the four components of a real-time embedded MPP implementation. In 
particular, we frame the MPP communications scheduling problem in Section 2.4. 
In Section 3 we describe our approach to solving this problem. A conclusion 
summarizes the paper and assesses how far we have gotten and what needs most 
to be done by ourselves or others. 



SECTION 2 

REAL-TIME EMBEDDED MPP 

In the next four sections we review the issues involved and discuss the current state 
of the art for each of the four prerequisites for a successful real-time embedded 
MPP (massively parallel processing) implementation enumerated in the intro- 
duction: high sustained processing rates, high sustained message passing rates, 
real-time services at the processing nodes, and real-time internode communication 
services. 

2.1 HIGH SUSTAINED PROCESSING RATES 

To meet the size, weight, and power constraints of current and future embedded 
applications, the programmable processor will have to deliver a large sustained 
percentage of peak processing rates. This will be especially true in the case of sig- 
nal processing, where the issue will be whether programmable MPPs can achieve 
the necessary processing densities to replace traditional application-specific pro- 
cessors. 

Many signal processing algorithms spend a large part of their effort repeatedly 
executing one or a few basic operations called processing kernels. Fortunately, 
research has demonstrated that it is possible to attain high processing efficiency 
on programmable processors for most common signal processing kernels. For 
example, (Linderman, 1992) has described benchmark results for QR (Quadratic 
Residue) Factorization and space-time processing in excess of 50% utilization 
through the use of optimized library functions. 

We have had similar experience in our recent work implementing the FoldFFT 
processing kernel of the Planar Subarray Processing synthetic aperture radar 
algorithm, see (Games, 1994). The FoldFFT function consists of a sequence of 
processing steps, including vector operations, array indexing, and an FFT (Fast 
Fourier Transform), that makes it useful for comparing, or benchmarking, the 
performance available from current processor technology. 

We compared the single processor performance of the SKY Computer SKYbolt 
and Paragon GP processing node for the FoldFFT function. Three different pro- 
gramming approaches were considered: plain C, C with optimized library calls, 



and pure assembly language. Each successive approach involves more program- 
mer effort and is less easily ported to other platforms, with the more involved 
approaches providing increased performance. In this case optimizing for the block 
length of the FFT was a key consideration. For anticipated size FoldFFT calls 
the assembly language versions achieved more than 50% of advertised processor 

utilization. 

As commercial MPP vendors increase the number of microprocessors at each pro- 
cessing node, attaining the required processing efficiencies will become more of an 
issue. For example, Intel will soon be selling Paragons in which the GP processing 
nodes, which contain two i860XP microprocessors one of which nominally was ded- 
icated to message passing, are replaced by MP processing nodes containing three 
i860XP microprocessors. But these multiprocessor node architectures are usually 
based on a shared memory computational model for which there is considerable 
experience and tools available for obtaining high sustained processing rates. 

We mention in passing the current interest in application-specific processing nodes 
to improve the processing density that these scalable MPPs can deliver. Although 
this is a deviation from the commercial general-purpose programmable stricture, 
it can be viewed as the next logical step beyond the use of optimized "library" rou- 
tines for applications where size, weight, and power constraints are an overriding 

concern. 

In general it appears that massively parallel platforms can provide adequate 
processing performance at individual nodes for partitioned algorithms that use 
only a few optimizable processing kernels. Application developers may have to 
customize generally available software to achieve acceptable efficiencies. 

Obtaining high sustained processing rates at individual nodes is clearly not suffi- 
cient, as the MPP concept requires that the processing be distributed amongst the 
processing nodes. Historically, the need to coordinate between processing nodes 
has resulted in a dramatic drop of efficiency over what could have been attained 
on a single node. The mapping of the algorithm to the MPP should attempt to 
minimize the negative impact of such coordination. Again there are time-tested 
techniques, such as pipelining with concurrent communication and processing, 
that can mitigate such effects for many of the linear algebra algorithms that may 
benefit most from an MPP implementation. These algorithms also usually have 
simple nearest neighbor communication requirements, which can also minimize 
the negative effects of message passing. In particular for the Paragon, many of 
these algorithms can be mapped to a mesh with the property that messages do 



not have to turn corners, which simplifies a number of issues, as we shall see. 
We have obtained promising results for critical cases of pipelined algorithms on 
the Paragon (Brown, 1994). The pipeline successfully hides the communications 
overhead and maintains high processor efficiencies. Note that this amounts to 
positive practical evidence for our assignment of low risk to the combination ol 
both of the first two requirements listed above. 

A key consideration in determining the granularity involved in this mapping 
problem is how fast data can be communicated between processing nodes, a 
subject that we now consider. 

2.2 HIGH SUSTAINED MESSAGE PASSING RATES 

Programs that use explicit message passing must surmount several barriers to be 
able to exploit the full bandwidth of the underlying message passing hardware. 
For example, care must be taken to minimize the number of times a message is 
copied. Furthermore, high performance programs must avoid message passing 
protocols which depend upon large numbers of messages to synchronize data 

transfers, because these messages incur a cost. 

The copying restriction is particularly important. For example on the Paragon, the 
cost of copying messages was identified as a limiting factor by the authors of the 
Performance oriented, User-managed Messaging Architecture (PUMA) operating 
system (Wheat, 1993). They report achieving inter-node communication rates 
in excess of 160 MB/s, but they were only able to attain memory copy rates of 
70 MB/s on the same machine. When communications require a memory copy, 
the throughput drops to about 55 MB/s. But PUMA provides an abstraction, 
called portals, which give programs on one node the ability to write directly 
into a prespecified portion of the address space of a program running on another 
node. Using portals, programmers can write applications in which messages are 
never buffered in the kernel, which greatly reduces the overhead associated with 
passing messages. In a similar vein, Intel has recently proposed the Virtual 
Channel Facility that gives the illusion that the network implements dedicated 
direct connections between processing nodes. 

Well-behaved applications often do not require the level of buffering provided by 
general purpose message passing primitives. For example, there are some applica- 
tions that send messages only of one fixed length, and generate a message passing 
pattern which guarantees that no node will have more than one unprocessed mes- 



sage at any time. Programs that exhibit this pattern of message passing can be 
implemented with a minimum of message copying and a message passing protocol 
that incurs no overhead. 

Many massively parallel processors provide vendor specific facilities on which 
a programmer can implement message passing primitives tuned to a particular 
application. For example, CM-5 programmers can use both active messages 
(von Eicken, 1992) and virtual channels to reduce the overhead associated with 

general purpose message passing. 

The Message Passing Interface Forum has designed machine independent primi- 
tives that give programmers more control. For example, programmers can declare 
that point to point communication will take place in something called "ready 
mode." The use of this mode places additional requirements on programmers, 
but implementations are free to make assumptions which allow improved and 
predictable performance. 

Unpredictability of performance of message passing primitives is also a worry. 
Our experience with the NX message passing primitives on the Paragon suggests 
that their performance varies greatly for subtle reasons. The primitives usually 
provide several modes of operation with different amounts of message copying. 
The dynamic state of the computation usually determines the message passing- 
mode. Fast modes can be employed when the system can detect well-behaved 
message passing patterns. The slow modes of data transfer are required to support 
the illusion that the size of every message queue is "large enough." To achieve 
maximum performance one must isolate and control all relevant parameters, which 
are not necessarily well documented or stable under software updates. 

Nevertheless, the situation for message passing rates is analogous to that for 
processing rates. In our use over the course of a year of the NX message passing on 
the Paragon we improved from 24 MB/sec to 86 MB/sec. See (Brown, 1994) for 
details of our relevant experience. It seems likely that applications developers can 
gradually improve and stabilize message passing performance on simple patterns 
by getting better or more suitable underlying software and by learning the ins and 
outs of the message passing primitives they do use. 

10 



2.3 REAL-TIME SERVICES AT THE PROCESSING NODES 

Current research in real-time systems, especially in the area of operating systems 
and scheduling, indicates that the management of large numbers of concurrent 
processes in a manner that predictably meets timing constraints is a difficult 
problem. The scheduling and resource allocation must be done in an integrated 
fashion across the entire system, including I/O scheduling. I/O scheduling is 
especially critical to embedded real-time systems. The solution to this problem 
will require the development of new operating system technology. However, recent 
developments in the area of real-time operating systems and communications 
should make this a feasible objective. Predictable hardware architecture will also 

play an important role. 

Traditional operating systems evolved to support time-sharing applications. The 
design objectives were to support a large number of users on a single CPU and 
to provide each user with essentially a virtual processor. This virtual processor 
(a process) is the functional equivalent of a dedicated machine. But since it 
is implemented, of course, by multiplexing the resources of a single machine 
among many users, the timing performance generally degrades as the number 
of users increases. The operating system, through scheduling of user processes, 
attempts a fair allocation of resources in which the users share equally in the 
loss of performance. UNIX is the quintessential example of this type of operating 
system. 

In contrast, a real-time operating system must explicitly limit the degradation 
of the timing performance of all processes as the number of processes increases. 
The user must be able to specify which processes are critical and must be able 
to guarantee that critical processes meet their timing constraints for specified 
workloads. If these workloads are exceeded, it would be desirable to specify the 
criticality of processes so that the performance of the system degrades in a graceful, 
predictable manner. Current research has shown that this is a difficult problem 
to solve in general, even on a single processor system. 

Many real-time systems (defense and space systems) have been successfully devel- 
oped in the past despite the inadequacies of traditional operating systems. The 
problem was solved, at great cost, with custom-built real-time executives and 
hardware support. High performance and predictability were the design objec- 
tives. The real-time executives, while meeting the real-time constraints, were so 
tightly tied to the specific application that they could not easily be reused and 
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changes in requirements often led to expensive and risky changes in the real-time 

executive. 

The real-time executives were often cyclic executives in which every event (use of 
the CPU, sensor, database) was explicitly scheduled. Until recently this meant 
these custom cyclic executives were often the most effective solution. Even be- 
yond the economic issues, in a rapidly changing world, it is not always possible to 
modify the real-time executive in a timely manner to meet new system require- 
ments because the required changes to a real-time executive may require a global 
restructuring of the executive. The provision of increased computational power 
by a MPP, if not adequately supported by a real-time operating system, could 

compound the development problems encountered in the past. 

Many experts feel that the first potentially practical advance beyond custom real- 
time executives to general purpose real-time operating systems was the develop- 
ment of rate-monotonic scheduling (RMS) (Liu, 1973). The initial formulation of 
RMS made so many restrictive assumptions that it could not be applied to an 
actual application. Research has since dramatically extended the initially limited 
applicability of RMS and even shown how it can be used for some distributed 
systems and communications scheduling (Sha, 1993) (see also discussion below 
on communications scheduling). Other approaches have emerged over the past 
decade. For example, the window protocols of (Zhao, 1990), have been incor- 
porated in various research real-time operating systems. Commercial real-time 
operating systems incorporating RMS are available that address the problem of 
scheduling tasks on a single processor, but not the more general problem of dis- 
tributed/parallel real-time systems nor the problem of fault-tolerance. 

Commercial real-time operating systems for the most part evolved from either 
UNIX and Mach or from small real-time proprietary executives. Both UNIX 
and Mach present the problems described earlier of an operating system that 
evolved from time-sharing applications. Modifications to UNIX have included the 
incorporation of support for RMS scheduling and priority inheritance protocols lor 
some shared resources. (LynxOS is a good example.) They address the problems 
of predictable interrupt handling times, context switching times, preemptable 
kernels, and user assignable priorities. They also have the advantage of the 
development tools that are generally available in a UNIX environment and support 

emerging real-time standards such as POSIX 1003.4. 

Support for TCP/IP provides a convenient means for these commercial systems to 
interoperate with existing non-real-time systems. This interoperability is limited 
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since the TCP/IP support does not support meeting real-time constraints, for 
example. Because of the UNIX heritage, other factors affecting predictable real- 
time performance are not addressed. There is no support for communication 
scheduling or real-time distributed processing. Unpredictability due to virtual 
memory, disk and network I/O, and X-windows servers can induce severe priority 
inversions (where a high priority task must wait for a low priority task). 

There are several research efforts underway in the area of real-time operating 
systems: Alpha, MARS, Spring, MARUTI, ARTS, CHAOS, HARTOS, DARK, 
RT/Mach (Ramamritham, 1994). They all attempt to address the issue of an 
integrated approach to scheduling. None of them explicitly address the issue of 
real-time operating system support for an MPP, although they all provide some 
support for distributed real-time applications. 

A distributed real-time operating system should provide support for (1) basic 
guarantees for real-time constraints, (2) fault tolerance, (3) distribution across 
a multi-processor heterogeneous system, and (4) integrated time-constrained re- 
source allocation. The distributed nature of the system would require that time- 
constraints are enforced for collections of tasks not just individual tasks. The 
timing constraints of all operating system and infrastructure primitives and their 
interactions would need to be known and be predictable. The operating system 
and infrastructure should also support scalability. 

A real-time operating system for an MPP would address similar issues but the 
homogeneous nature of the processors and regular topology of the communication 
network should simplify the problem. Operating systems and languages for MPPs 
have traditionally been oriented towards the support of scientific computing in 
which the principal objective is to attain as much of the potential speedup offered 
by a parallel architecture as possible. While high throughput is desirable for 
real-time applications on an MPP, timing predictability must not be sacrificed. 
None of the current MPP operating systems, communication libraries, or lan- 
guages take explicit account of real-time predictability. The need for predictable 
communication in an MPP complicates the real-time operating system problem. 

2.4 COMMUNICATIONS SCHEDULING 

In order to guarantee the hard real-time performance of the overall system it is 
clearly necessary to ensure timely flow of data among the computing tasks. This is 
relatively easy for tasks on the same processor, but may be difficult when message 
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passing on some sort of network must be used. It is particularly difficult when an 
attempt is made to maximize the usage of processing resources by pipelining and 
when the data communications network is complex. 

Real-time (especially hard real-time) applications have not been uppermost in 
the minds of the developers of multiprocessors, and certainly much of the re- 
sponsibility for this component must inevitably be borne by the developers, not 
of multiprocessors, but of operating systems and applications software. In fact, 
there is so far not a lot of experience to draw on to relate the simplistic perfor- 
mance measures that are available for new massively parallel machines to effective 
performance in actual realistic applications, even other than hard real-time appli- 
cations. As discussed below, existing scheduling technology may be farther from 
providing an adequate solution than one might expect. 

The scope and depth of the problem of how to provide adequate communications 
scheduling for real-time embedded massively parallel processing as we see it can 
be seen better by discussing four different aspects. 

1. The distribution of the communications resource: We want to achieve effective 
simultaneous use of physically separated parts of a communications network as 
much as possible. It would largely defeat the purpose of the hardware architecture 
if we were reduced, for reasons of predictability, to using the sophisticated data 
communications network of a supercomputer like the Paragon or CM-5 as if it 
were a multi-access bus. 

2. The distribution of knowledge of communications needs: We cannot assume a 
centralized repository of current communications requests. Some communication 
needs will be known ahead of time, for example, from the preliminary algorithm 
partitioning and mapping, while other communication requirements can only be 
known at run time, because of data dependencies in the computation. Can useful 

bounds be determined in the latter case? 

3. The weakness of available control mechanisms: The backplane mesh of the 
Paragon, for instance, provides fixed message routing algorithms that do not allow 
for any sophistication when contention arises. Indirect measures by entities off 
the mesh itself are probably necessary. They may take a while to appreciate what 
is going on on the network and also to affect it. Without a basic architectural 
modification, our mechanisms for implementing whatever distributed scheduling 
algorithm we may decide to use must depend mostly on the operating system and 
protocols for cooperation observed by the applications processes themselves. 
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4. The relationship of communications scheduling to other components of the 
overall problem mentioned above: On one side is the high performance message 
passing. Benchmarks, requirements, and guarantees must be designed that reflect 
the kind of performance that will be necessary for a real embedded system, not 
just for high volume, low latency node-to-node channels. We will need to know 
how the communications system performs under a multidimensional variety oi 
loads. 

On the other side are the operating system, applications processes, and the more 
or less periodic message passing requirements that will be generated. Simply 
guaranteeing that certain messages will be ready before a given time may not be 
sufficient, because having them ready too early could slow down the transmission 
of other messages. Thus the importance of lack of "jitter" is amplified in this 
context. Calculations of required buffer size may also be difficult. 

To this list might well be added various other problems, such as possible disparities 
among processors' local clocks, and the possible necessity for distributed input 
and/or output. 

To emphasize the inadequacy of separately providing high performance message 
passing, high performance processing at the nodes, and a high quality real-time 
operating system at the nodes, without addressing the communications scheduling 
component in the integrated way we advocate, consider the following example for 
what might happen on a machine like the Paragon. Suppose that ten nodes 
arranged in a horizontal row (JVi, ..., iVio from left to right as shown in Figure 
1) are all generating messages at a high rate and sending them to No-, which 
lies even to the left of iVj, the leftmost of these senders. We assume that the 
message passing software is good enough so that each node can generate messages 
sufficiently fast to use up the capacity of a horizontal link. 

A reasonably designed backplane that cannot take into account message origin or 
priority might use a fair merge at each horizontal node (this is the case with the 
Paragon). In this case, data will flow from iV"io to N9 at a rate of, say, C bytes 
per second. Similarly, C bytes per second will flow from JVg to JV8, but half of this 
flow will be from N9 and half originally from JVi0. Unfortunately, the extension 
of this fair merge policy further down the line becomes disastrous, because the 
fraction of total flow on each horizontal link that originates from 7Vi0 decreases 
by half at each step, so less than one byte per thousand flowing into NQ originates 
from JVio. We call this phenomenon the failure of fairness. 
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Figure 1.   Communication Example 

It seems likely that for certain pipelined cases this drastic reduction in the band- 
width available to iVo will be transient and will not be a serious problem. 

With lower utilization the performance penalty for successive fair merges of addi- 
tions to a data stream will be less extreme, but still considerable. We believe that 
we have observed its effect on the Paragon in our benchmarking experiments, but 
only when using multiple receivers, so that the slow removal of messages from the 
backplane by N0 doesn't dominate other costs (Brown, 1994). 

A related degradation in predictability is especially relevant to hard real-time 
applications in which typical messages comprise only one or a few packets. A 
single packet X traveling from Nw to NQ will be delayed at an intermediate node 
if that node just happens to be putting one of its packets into the stream slightly 
before the arrival of the head of X, or if it puts on a packet at essentially the same 
time as the arrival of the head of X and X loses a (fair or unfair) arbitration. With 
the Paragon system, X can get no credit down the line for having been delayed 
earlier. Nor can X be given consideration for being part of a large or important 
message. Even with fair arbitration the possible variation in the arrival time of 
X is large. 

Where are we to look for a solution to the communications scheduling problem? 
As in the case of process scheduling for a sequential real-time system, we are 

looking for two things: 

1.      algorithms and protocols, etc.   that can be (and are) implemented on 
various machines to provide adequate real-time communications, and 
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2.      an overall analytical framework that enables us to state guarantees and 
easily build, modify, and compare systems. 

A natural suggestion would be to treat message passing as much as possible 
like any other task and try to transfer successful scheduling technology more 
or less intact. The distributed nature of communications and the lack of control 
mechanisms on the backplane are significant obstacles to such an approach, even 
if one is not ambitious about performance. An efficient solution is, of course, even 
more difficult. 

It does not seem to be sufficient for our purposes to appeal to the general theory 
of multiple resource scheduling. The informal consensus is that this theory does 
not at the present time provide very useful techniques, and it seems that the 
special considerations of message passing are quite significant in differentiating 
problems of most concern to us from the general cases. These include the fact 
that one must worry about finding a mechanism to enforce whatever schedule 
one might decide to use, and that there might not be centralized knowledge of 
all communications needs unless the computation is absolutely without deviation 
from a known periodic dataflow pattern. Also, in our context there would be very 
many different resources to consider, which would make it unfeasible to apply 
some fine-grained styles of analysis. 

Recent papers (Aras, 1994; Malcolm, 1994) survey and compare current approaches 
to the problem for a variety of networks and applications, but not including the 
context of interest to us. We can hope to learn much from this highly devel- 
oped technology, especially for "subscheduling" localized parts of the network 
for short time intervals. But the difference of context is surprisingly significant. 
For instance, their context usually implies that the intermediate nodes that pass 
along data are capable of intelligent decisions. Also, most of the data traffic 
we envision will have hard deadlines (and the first of these papers assumes the 
opposite), so certain efficiencies that might be gained by filling up spare capacity 
with soft-deadline data are not realistic. As is said in (Malcolm, 1994): "The 
basic approach taken in scheduling real-time messages over a local area network 
is to emulate existing centralized scheduling." The network is used exclusively by 
at most one message at any given time. For these and other reasons one must 
be very careful when transferring general conclusions from standard theory to our 
context. 

Development of a communications scheduling component is essential for high 
performance real-time embedded systems on massively parallel computers.    It 
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should have an early impact on the other components, because it will provide 
greater insight into how to evaluate underlying message passing capabilities and 
the requirements to be imposed on real-time processing at the nodes. It may 
eventually have an impact on architectural issues. For instance, the questions 
of how much capability for algorithmic scheduling needs to be made available 
at the routers and what balance is needed, in a very general sense, between the 
communications capabilities and the brute computational capabilities of massively 

parallel machines. 
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SECTION 3 

COMMUNICATIONS SCHEDULING APPROACH 

Our motivation, goals, and expectations for our work on this component hopefully 
come across sufficiently well from the last section. Keep in mind that, as stated 
there, we are looking for both adequate methods of scheduling and an appropriate 
analytical framework. In this section we summarize the program of research 
and development that is emerging from our work up to this point. In the first 
three subsections we compare two general, somewhat dual, approaches to the 
solution (called the link level and network subdivision approaches) and describe 
more specific examples of the Network Subdivision approach. In the subsection 
on Packet Stream Analysis we present an analytical framework that is at an 
intermediate level of granularity and is compatible with the Network Subdivision 
approach (among others). A potentially useful variant of the ordinary notion of 
utilization is presented in the section on Discrete Demand. The relationship of 
a potential communications scheduling facility to other components of an overall 

solution is touched on briefly in Section 3.6. 

3.1 LINK LEVEL APPROACH 

One approach is "bottom up," considering individually many small components 
of the data communications network. We call this the link level approach. Each of 
these elementary components is treated as an individual communications resource. 
One can be more or less ambitious about how small to take the elementary 
components, but they should be chosen small enough so that their behavior as 
transmission devices can be pretty well pinned down. They should deal with 
only one, or at most very few, packets at one time. For example, a model of the 
Paragon might have one resource for each direction of each horizontal and vertical 
link of the backplane, two resources for each connection from the backplane to 
the compute nodes, and probably several resources for each of the specialized 
processors at the backplane intersection points. 

There are two advantages to this kind of model. First, it provides a convincing 
mathematical framework to accumulate and coordinate our factual knowledge 
about the actual machine or its specifications. Second, it allows a reduction of 
communications scheduling problems to the same mathematical form as more 
traditional multiple resource scheduling problems. While such mathematical for- 
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malizations may have been developed with resource activities other than data 
transmission in mind, their purely mathematical analysis is valid for this context 
also, of course. Thus we can hope to draw on established theory or at least try to 
modify results that come close to using the right assumptions. 

Without going into detail, the reduction involves looking upon the long distance 
transmission of a packet as the successive transmission of that packet through 
a series of atomic components. This is facilitated on some machines, like the 
Paragon, because the complete path that a packet must take from transmission 
to reception is determined in a fixed simple manner, although the times at which 
it reaches the various points of this path are not. The processing done by each 
resource is essentially just transmission, and the transmissions must be performed 
in exactly the right order. Thus one needs to add an ordering constraint to 

ordinary multiple resource scheduling problems. 

Three points should be made about the link level approach as it relates to our 
current work. First, it is probably too ambitious. Because of the number and 
nature of the resources involved, satisfactory mathematical analysis becomes very 
difficult, and scheduling algorithms, bounds, etc. that one might extract without 
clever approximation tricks might well be unacceptably complex. This is only a 
partial rejection, because convincing approximation maybe possible, and tractable 
general bounding results may be feasible. 

A second point about the link level approach amplifies the first worry. The actual 
packet size of typical transmissions on the Paragon would probably be such that 
it often occupies many elementary components at once. This further complicates 

the mathematical form of the problem. 

The last point about the link level approach is more positive. It may allow one to 
provide crude, but convincing bounds on the performance of parts of the network 
in very simple circumstances. Such bounds will probably be used at some point 
in the rigorous justification of the results suggested by other approaches. 

3.2 NETWORK SUBDIVISION APPROACH 

The network subdivision approach is somewhat dual to the link level approach. It 
is "top down," viewing the entire communications network as a complicated device 
that does many things simultaneously. Different sets of tasks that it is performing 
simultaneously interfere with each other to different degrees.  The characteristic 
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idea is to divide up the network (or the use of the network) either spatially or 
temporally or both to reduce the problem to smaller resource contention problems 
that can be handled by known techniques. This reduction might be in more than 
one stage. There is an explicit willingness to pay a reasonable price in efficiency 

to achieve this reduction. 

An acceptable reduction must include the integration into an overall analytical 
framework of a global analysis (probably to be provided by us) of the process of 
subdivision with a known or constructible local analysis of the smaller problems 

(such as GRMS might provide). 

We assume the overall communications requirements for the application are ex- 
preyed as a set of what we call periodic message tasks. This does not mean 
we assume all message passing requirements are periodic. But the periodic re- 
quirements are expected to dominate initially, and techniques have already been 
developed in the context of ordinary hard real-time scheduling which allow a cer- 
tain amount of nonperiodic and/or soft-deadline work to be handled by a special 

periodic task. 

Each periodic message task corresponds to an indefinite sequence of messages of 
fixed size that need to be sent from one fixed location to another, with a specified 
period, message ready time, and deadline. The periodic message tasks are to 
be derived from knowledge of (or assumptions about) the dataflow graph of the 
application, the physical location of abstract computation tasks from that graph, 
and the real-time processing capabilities of the nodes. Guaranteed behavior of 

the operating system is of course required. 

Note that our communications scheduling techniques must be flexible enough 
to allow for some play in the times at which messages are ready to be sent, 
and this is built into the notion of a periodic message task. Also, we probably 
will need to use as part of the communication scheduling component run-time 
decisions that are made at the processing nodes. This may include interpreting 
handshake messages, following token-passing protocols, and looking at a clock 
to delay sending messages under some circumstances. None of these should be 
computationally expensive, but they do require compiling additions to the basic 
functionality of the application into the programs that run at the nodes, and that 
will affect the timing of their message requirements somewhat. 

Interruptions by the operating system must also be allowed for at some point. This 
is a potentially serious obstacle for any approach to communications scheduling, 
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particularly for non-real-time operating systems. We do not yet have a com- 
prehensive plan for a solution, but it must take into account considerable prior 
knowledge of the temporal distribution and extent of the interruptions. There are 
two obvious weapons to use: explicit allowance in schedules for large, highly regu- 
lar interruptions and overriding smaller ones by appropriate choice of granularity 
and padding. It is not obvious that these will suffice in general — one might even 
reformulate our problem as the generation of minimal sufficient requirements on 
the operating system to allow for communications scheduling. 

In our current formalism the spatiotemporal division of network usage is accom- 
plished as follows. The set of periodic message tasks is partitioned into an ar- 
bitrary number of message type families. That is, each periodic message task is 
assigned to one and only one family. We stipulate an activation schedule that 
prescribes at which times each of the various families is active. The significance 
of a family being active is that some lower level scheduling system is free to send 
message instances from periodic message tasks of a given family when, and only 

when, that family is active. 

The activation schedule must satisfy a noninterference axiom whose statement 
requires that we imagine the network is divided up into a set of elementary 
components as in the link level model. What is important here is that the network 
elements are independent in the sense that simultaneous use of any group of 
them does not reduce the effectiveness (i.e., the bandwidth, latency or any other 
relevant measure) of any element. To each family F of periodic message tasks 
there corresponds a subset N(F) of the entire network that is defined to be the 
smallest set of network elements such that any message instance from any periodic 
message task of that family will use only network elements from N(F) when sent. 
Note that the subnetworks may be oddly shaped and need not be disjoint. The 

noninterference axiom is then just that 

(*) for every two families F and F', if F and F' are ever active at the same 
time, then N(F) and N(F') are disjoint. 

Another way of putting this is that more than one family may be active at once, 
but those active at any one time use disjoint subnetworks. This accomplishes the 
factorization abstractly, and we are ready to consider how to do the scheduling 
on the subnetworks. We are left with several important questions: 

1.      how best to partition the set of periodic message tasks 
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2. what relative amount of time to allot to each family to be active and how 
to break up and interweave their active intervals as sets of times 

3. how to implement whatever activity rotation we decide upon 

4. how to determine and implement communications scheduling on the 
subnetworks when active. 

3.3 SUBDIVISION PROPOSALS 

We first sketch Simple Time Division Multiplexing (STDM). In this case, the 
periodic message tasks are partitioned very simply by putting all messages with 
the same sender in the same family, not looking in any more detail. Each periodic 
message type is assigned a load and the relative total loads of the messages of a 
given family determine the fraction of the total time that family is active. Actually, 
it may not be easy to determine an adequate way of assigning loads, but this 
problem has been dealt with before by others in somewhat similar contexts. We 
assume here also that the rest of question (2) poses no real problem. 

The fact that the families are sender based has two advantages: a simple token 
passing protocol can be used to implement the activity rotation, and the sender 
can effectively enforce whatever scheduling policy it wants during its period of 
activity. This is a significant payoff, because we are essentially reduced to the 
single resource scheduling problem in a form that has a highly developed theory. 
Generalized Rate Monotonie Scheduling, Earliest Deadline First, and what we 
call Fire When Ready all are candidates. By Fire When Ready we mean that the 
sender just sends all messages when they are ready to be sent (during its activity 
period). This may sound bad, but if the backplane is very fast compared to the 
process of getting messages on and off the backplane, then it may be reasonable, 
as well as requiring the least amount of changes in the system software. 

Simple Time Division Multiplexing is very similar to the suggestion in (Sha, 1993), 
except that this paper is concerned with a particular system involving data com- 
munications on a ring or a bus. The essential similarity lies in the key idea of 
using a preliminary step to reduce the problem to an interweaved set of sender 
based scheduling problems. The big disadvantage of STDM in our context is that 
it does not attempt to make use of the distributed nature of the network, it may 
be unacceptably wasteful. 
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The second proposal is specific to machines similar to the Paragon and might 
be called Orthogonal Mode Scheduling. It is not meant to be applicable in all 
cases, but only when a certain assumption about the message flow patterns is 
obeyed, namely that all messages follow paths that are either purely horizontal 
or purely vertical. This is in fact often the case for mappings involving linear 
algebra functions as was discussed in Section 3.1. We do not attempt any further 
justification of the reasonableness of this assumption here, except to point out 
that one way to ensure it would be to make sure that more general messages 
(which may turn at most one corner) are intercepted and passed on by the node 

at their corner, if they do turn a corner. 

In Orthogonal Mode Scheduling there are two message families, horizontal and 
vertical. The deterministic message routing algorithm of the Paragon can easily be 
seen to imply that the noninterference axiom is satisfied as long as we allow only 
one family to be active at once. Again we appeal to some reasonable, unspecified 
procedure for allocating time between the horizontal and vertical modes. The 
idea here is that the entire machine switches from horizontal to vertical mode 
with a relatively low frequency by means of the available global synchronization 

primitives. 

Within one interval when the horizontal family is active, there is potential inter- 
ference only between messages sent along the same horizontal row, and similarly 
for the vertical family. We now can use another layer of reduction. For instance, 
one might treat each horizontal row as a network itself and apply the STDM 
sketched above. Note that considerable parallel utilization of network elements 

can be achieved in this manner. 

Let us introduce some terminology relevant to the Paragon at this point. The 
overall data communications network includes the backplane proper and what we 
will call ramps and node gateways. The (on and off) ramps are the connections 
from the compute nodes to the backplane proper and are, from our point of view, 
really quite similar to the backplane proper. Node gateways include everything 
between the applications process (or wherever one wants to start an analysis) and 
the ramps. The exact nature of the node gateways is not fixed. In particular, node 
gateways include network interface and message passing software. Thus they are 
sophisticated entities whose behavior may be somewhat hard to control or predict. 
We want to make sure that every resource for which there might be competition 

among messages is accounted for. 
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We are also considering modifications of these proposals that attempt to take 
advantage of the fact that, at least in some circumstances, the actual transmission 
on the backplane is much less of a constraint than the transmission to and from 
the backplane. In this case we can let SR(F) be the set of compute nodes which 
are either senders or receivers of some periodic message task in a family F, and 
modify the noninterference axiom (*) by weakening it to use SR instead of N, 
that is, to the simple condition 

(**) for every two families F and F', if F and F' are ever active at the same 
time, then SR(F) and SR(F') are disjoint. 

The usage of other network elements would be suitably bounded to ensure that 
neglecting them is justifiable. 

3.4 PACKET STREAM ANALYSIS 

Here we present just an introduction to an analytical framework at an intermediate 
level of detail that we are developing. The framework is designed to be able 
to provide performance guarantees for message passing schedules that use the 
parallel capacity of communications networks like that of the Paragon relatively 
efficiently. It provides a good example of the "pragmatic" strategy mentioned 
in Section 1.2, p. 4, because it attempts to use performance parameters of the 
underlying hardware and software for which credible bounds can realistically be 
established. It is compatible with the network subdivision approach but not to 
be considered only a part of that scheduling approach. 

We begin with a discussion of the granularity of events mentioned in schedules 
— they could be fine grained (like the arrivals of particular bytes at particular 
routers) or relatively coarse (like the initiations and completions of send and 
receive messages in user processes) — and introduce the intermediate level of 
granularity used in Packet Stream Analysis. Next we motivate the desirability of 
mixing packet streams and give a motivational, "bottom up" view of the overall 
capacity of the network. A central theme of this section is the desirability of 
using, instead, a more practical "top down" characterization of network capacity, 
in terms of what we call "feasible message transmission modes." The idea is 
that the feasibility of some message transmission modes could actually be firmly 
established. We introduce a notion of schedulability using schedules that are based 
on feasible modes. An example clarifying the accumulated sequence of formal 
definitions is presented, an algorithm for determining if a set of requirements is 
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schedulable using a given set of feasible modes is given, and the overall approach 

of Packet Stream Analysis is summarized. 

3.4.1 The Granularity of Scheduling 

It is sometimes given as one of the defining characteristics of hard real-time 
problems that we must consider constraints on individual messages. For example, 
a requirement might be that a particular message must be completely received 
by a particular time. This emphasis on individual messages may be a slight 
exaggeration, as groups of messages are often what really counts, for instance, 
when several inputs are required for a subcomputation to begin. Nevertheless, as 
a good first approximation it seems that we must schedule at least down to the 
level of detail of individual messages. Finer levels of scheduling are really used as 
a device to ensure the message level requirements, and hence we are free to choose 
any finer level to facilitate the scheduling theory or implementation. Thus, we 
might choose to schedule when each packet of each message is sent and arrives. 

Packet Stream Analysis depends on a cumulative analysis at a level between 
packets and messages. Individual packets are not scheduled. Their precise fate 
is left to the vagaries of intricate or obscure lower-level software, hardware, and 
run-time events. Attention is focused rather on the rates of transmission in packets 
per second and the times at which those rates are attained. 

We are motivated by situations where most messages are relatively long and are 
sent broken up into many packets of size Adata. There may be different packet 

sizes for different messages, but we start by assuming that Adata is fixed. On the 
other hand, the optimal value for Adata is one of the parameters that one may try 
to determine using this kind of analysis. Even if only one channel is considered, 
different packet sizes result in different data transmission rates in bytes per second, 
because of the overhead of packetization and possibly other factors. In the case 
of several channels in operation at one time, the packet size has other effects too. 
For instance, smaller packets result in the stream model being more valid and 
the smoother mixing of streams, but they require regulated sending at higher 

frequencies. 

If a given message consisting of many packets is sent at a given time, what is most 
significant in determining the time of complete delivery is the rate of transmission 
in packets per second. This assumes that the rate is reasonably constant, and that 
individual packet latencies, start-of-message and end-of-message processing, and 
other costs are relatively small. This does not mean that all of these costs can be 
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neglected, but they will be treated as second-order corrections to a theory based on 
packet rates. Similarly, if the rate of putting message packets onto the backplane 
is not constant, but attains several different constant values (including possibly 0) 
over relatively long time intervals, then the beginning times and lengths of these 
intervals and the rates on those intervals are the critical factors in determining how 
much of the message has arrived by a given time. In a less controlled situation, 
where one has only bounds on a possibly fluctuating packet transmission rate, 
bounds on the arrival time can be calculated. 

The critical times at which rates change are not necessarily determined in the 
schedule absolutely (i.e., by particular a priori determined values of any clock 
reference), they may be influenced by run-time events in various ways. For 
instance, one might begin sending a message at a small rate until some other 
message is known to be completed, when the rate can be raised. Here we just 
want to emphasize that we are starting by constraining the class of schedules 
which might end up being successfully used. We need to worry about there being 
some way to effect an acceptable schedule, but the exact choice of mechanisms is 
not a concern of this analytical framework. 

If the number of packets per message is low, then a limiting case of Packet 
Stream Analysis might still be valid, but its justifying assumptions would certainly 
be stretched, and the overhead of its machinery of definitions would not be 
worthwhile. 

3.4.2 Stream Mixing 

At the packet stream level, there is an attractive way of viewing the overall carry- 
ing capacity of the communications network, namely that, with certain allowances 
for overhead and as a function of A</ata, it can simultaneously support various 
packet streams moving at various rates as long as the total carrying capacity of 
each network element (in packets per second) is not exceeded. This might allow 
for an enormously simplified analysis, as long as adequate (and not too drastic) 
allowances can be made for all relevant categories of overhead. 

Initial latency, the transmission time for the first packet of a message, is one kind 
of overhead. The exact nature of the network interface software and message 
passing software must be considered at this point, because various other costs, 
like memory copies, might be relevant. In the case of the Paragon architecture, 
one kind of overhead would be an allowance for the extra difficulty that a router 
has when it needs to combine two incoming streams, as opposed to just passing 
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one stream through. It should be optimistically noted that two streams moving 
in opposite directions through a backplane node do not interfere with each other, 
at least according to the best information we have at this point. 

This view of capacity suggests the intriguing possibility that we may be able to use 
the Paragon backplane for real-time applications more or less as it was intended 
to be used in general. The Paragon backplane was designed taking into account 
a long process of interacting theory and practice, and its designers clearly did 
not have in mind that applications systems would need to take care that message 
streams never interfere with each other. Rather, the underlying hardware and 
software should take care of stream mixing efficiently. All we need to do is get 
hard bounds on how well this is done and make sure we never ask too much of 

the system. 

Implicit in the above discussion is the idea that under certain circumstances we 
might ask a node to send a stream at a regulated rate less then the maximum 
possible. It is unclear how good a mechanism for doing this is available. Even 
assuming a good real-time operating system at the nodes, this requirement has 
a "negative" aspect to it that is not of the same character as the requirements 
usually envisioned for operating systems or message passing software. That is, for 
most requirements, faster is better. In as much as it seems that stream sending 
regulation would be much more efficient if done by software at a lower level than 
the application, this capability may eventually be a serious suggestion for a new 
requirement on real-time operating systems or message passing software that is 
motivated by the global communications scheduling problem. 

On the other hand, good stream sending regulation is probably not essential. 
Note that very low rates can be effected by the applications process itself, if 
necessary, although how evenly is unclear. We would like to know when stream 
regulation would be desirable and how stringent are the requirements on available 
rates, accuracy and evenness of rates, etc. But we would also like to use this 
analytical approach to justify schedules which depend mostly on intelligently 
timed "blasting," i.e., sending packets at as high a rate as possible, partly because 
this is, again, the natural way to use the machine. It may be possible to provide 
useful guarantees for blasting when combined with regulated sending at very low 
rates. This highly asymmetric paradigm would be reasonable when most of the 
message passing traffic is high rate data transmission that has been carefully 
planned beforehand, but some small amount of miscellaneous message traffic is 

necessary. 
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3.4.3 Feasible Message Transmission Modes 

There are several difficulties in determining the capacity of the network from 
the capacities of its elements and appropriate overheads that are related to the 
objections made above to the Link Level approach (page 20). How is one to isolate 
and definitively measure or credibly predict the capacities of each of the network 
elements involved in the transmission of a message? How are we to combine 
the overheads associated with the elements of even a single channel into one 
overall channel rate? When two streams are combined, how does the associated 
overhead affect them individually? This last difficulty, with related questions 
about combining streams, is probably the most interesting and compelling. 

To see that some naive ways of combining overheads will not work, consider the 
following example. If there are several streams merging into one, then the failure 
of fairness example becomes relevant. Either the analysis of overheads is subtle 
enough to take into account the precise order of the senders, or the overheads 
are taken so high that backplane carrying capacity is not approached, and the 
phenomenon of failure of fairness is not manifest. 

The notion of feasible message transmission modes is suggested to sidestep some 
of these difficulties. Instead of talking about the capacity of individual network 
elements, or defining the capacity of the overall network directly, we define what 
is essentially the capacity of a way of simultaneously using a set of (abstract) 
channels. 

Consider the patterns of simultaneous message streams on the Paragon backplane 
depicted in Figure 2. All of the nodes represented are on one horizontal line, and 
the vertical line segments represent the connections (ramps and node gateways) 
from the backplane to the computation nodes. This is an important special case, 
as observed in the discussion of orthogonal mode scheduling (page 24), and is 
quite complex enough to illustrate the idea of feasible modes. In Pattern 1, A is 
sending to B, and C is simultaneously sending in the opposite direction to D, a 
node between A and B. The hardware is designed so that there should be little 
or no interference between these two message streams, and we have not observed 
any. In Pattern 2, A is simultaneously sending messages to B and C, which lie in 
opposite directions. Depending upon the support software, this may require the 
application to interweave sends laboriously. In any case, we expect for Pattern 2 
less resource contention on the backplane than off it, although the router node at 
the connection of A to the mesh is being used by both streams. In Pattern 3, A 
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Figure 2.   Some Linear Patterns on the Paragon Backplane 

is sending to B, which is simultaneously sending to a node C further along, and 

similar comments apply. 

Pattern 4 represents the kind of situation of most immediate interest. Even with a 
good understanding of how the hardware and software operate and measurements 
of achievable rates for single streams, it is difficult to predict how quickly data 
can be transferred in this pattern, especially assuming all senders just send as 
fast as possible. On the other hand, we may be able to demonstrate, through 
a combination of experiment and knowledge of the implementation, that certain 
rates (in packets per second) can be reliably established and maintained. For 
instance, it may be possible to use regulated sending at rates rx from A to B, r2 
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from C to D, and r3 from E to F. We could then think of (j*i, r2, r3) as a lower 
bound on the capacity of the network relative to this pattern. 

We expect that the capacity of the network for this pattern is relatively insensitive 
to minor distortion of the picture - we might use a vertical line, or use a different 
horizontal line, or move everything over to the left one unit, or even increase the 
distances without changing the capacity very much. It seems plausible, but not 
at all convincing, that keeping rx and r2 the same and reducing r3 should result in 
an achievable triple. It would be safer to interpolate: for instance, if (r1? r2, r3) 
and (rx, r2, s3) are both achievable, and t3 is between r3 and s3, then (ri, r2, t3) 
is achievable. 

High sending rates may only be achievable without any regulating mechanism at 
all ("blasting"). Especially in that case, it may be an unacceptable oversimpli- 
fication to use particular rates in our description of achievable, stable message 
transmission modes. The rates may vary with time considerably, and the order of 
starting may be important. There may be hidden aspects of the situation which 
determine the actual rates in a given trial, so one must be very careful about 
assertions of what can reliably be achieved. For this reason, we use rate intervals 
rather than particular values for the rates in the formalization below. 

First define a channel to be an ordered pair of nodes, a sender and a receiver. 
Because of the fixed routing algorithm of the Paragon, a channel corresponds to 
a particular path from the sender to the receiver, at least on the backplane. If 
one considers in detail not just the backplane, but also, as we must, what we have 
called the ramps and node gateways, then it may be possible for two messages 
from the same sender to the same receiver to take slightly different routes. One 
way this could happen is that there might be a buffer which is used only in certain 
circumstances and bypassed in others. It is thus possible that a channel may not 
be quite the same as a path. For our purposes we can just talk about channels 
and avoid worrying about paths as such. We do not differentiate among different 
processes at the same node in the notion of a channel, although this is a possibility 
for the future. 

A (message transmission) mode is a vector of distinct channels, together with 
associated upper and lower bounds on the packet rates for the channels of the 
pattern. The lower bounds must be at least 0, which can be used as an indication 
of no real restriction. Any clearly unattainable upper bound can also be used as 
an indication of no real restriction. The channels do not have to be restricted to 
one horizontal or vertical line. 
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A message transmission mode M is feasible for a particular packet size Adata 
if simultaneous packet streams for all channels of M with packets of size Adata 

and packet rates consistent with the bounds of M can actually be established 
and sustained. It is not required in this definition that the senders be able to 
maintain constant rates, only rates within the given bounds. One case where this 
is particularly relevant occurs when we can guarantee certain of the lower bounds 
only by blasting. It is assumed that all channels sharing any network resource 
with any channel of M have rate bounds stipulated in M or are not in use at all. 
There are hidden parameters in this definition, especially the operating system and 
message passing software being used. Also, in as much as rate specifications are 
not really instantaneous but involve averaging over at least a short time interval, 
there is some ambiguity in the definition, but we assume this is not a problem m 
light of the basic assumption of many packets per message. 

In order to make guarantees of schedule adequacy as discussed below, it is not 
necessary to know exactly which modes are feasible. It is enough to know that cer- 
tain modes are feasible, and we do suppose that this is possible by a combination 
of experiment and analysis, at least for some relatively simple, but useful modes. 
The more information of this kind one has, the better analysis of communications 

schedulability Packet Stream Analysis provides. 

3.4.4 Packet Stream Mode Schedules 

A packet stream mode schedule (or PSM schedule) is a sequence of message trans- 
mission modes say Mx,..., Mk, together with a list of times tx < ... < tk < tk+1. 
The idea is that mode M; starts at time t{ and ends at time ti+1. Overhead for 
switching modes must eventually be addressed, as must other sources of ineffi- 
ciency, of course. A PSM schedule S, as above, is feasible if each of its sending 

modes is feasible. 

We adopt a fairly standard notion of message passing requirements. In the version 
presented here neither schedules nor requirements are assumed to be periodic, but 
a more refined version should take into account periodicity. For now, an individual 
message requirement is just given by a sender, a receiver, a number of bytes, a 
ready time, and a deadline for arrival (which must be greater than its ready time). 
The live interval of an individual message requirement is the interval of time from 
its ready time to its deadline. A simple requirement set is a set of individual 
message requirements such that no two individual requirements with the same 

channel have overlapping live intervals. 
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Recall that we are assuming relatively small individual packet latencies. Given 
a PSM schedule and an individual message requirement it is easy to calculate, 
as a function of time t, a lower bound on the number of bytes of that message 
that will have been sent by time t, assuming that the sending modes indicated 
by the schedule are followed. Hence one can calculate a worst case arrival time 
for the entire message. We say that a PSM schedule S is adequate for a simple 
requirement set Req if S is feasible and, for every individual message requirement 
R in Req, the worst case arrival time thus calculated using S is at most the 
deadline for R. 

Given a packet stream mode schedule S which is adequate for a set of requirements 
Req and faced with a system whose communications requirements are described 
by Req, there are still implementation issues to be faced. At some point one 
must make allowances for time necessary between modes to coordinate all senders' 
changes to their next determined rates and receivers. The appropriate mechanism 
for switching modes is not clear either. If sufficiently good global synchronization 
is available, then one can simply insert modest pauses to allow for all packets of 
the last mode to be cleared and for all senders to be assured of having reached 
their idea of when the switch is to occur. As an optimistic example, the relative 
difference between the hardware supported local clocks at any two nodes of the 
Paragon at any given time is guaranteed to be at most one microsecond. 

One detail deserves comment here. Note that we have stipulated that the packet 
streams are always to be sent at rates between the currently relevant upper and 
lower bounds. We assume below that artificial padding can be sent (to satisfy 
the lower bound requirement) in case a schedule calls for a message stream to be 
sent before the message is really ready or after it has been completely sent. It 
is not out of the question that such padding might be necessary for the smooth 
and hence efficient operation of the message passing system. If such padding is 
necessary but not feasible, then more complex definitions are needed. 

3.4.5 The Schedulability Problem 

Given a simple requirement set Req, is there a PSM schedule which is adequate for 
Req? This can be taken to be the fundamental schedulability problem for Packet 
Stream Analysis. There are many, many variants (for instance, one should be 
able to produce an adequate schedule if there is one, and periodic versions should 
be considered). The schedulability problem is representative of the difficulties 
involved with related problems, and we concentrate on it for definiteness. 
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Example: Suppose we have three message requirements along the three channels 
depicted in Pattern 4 of Figure 2: one message from A to B of length LAB, one 
message from C to D of length LCD, and one message from E to F of length LEF- 

All messages are ready at time 0, and all have deadline 1. Assume we know that 
three modes (Mi, M2, and M3) are feasible, where M, has lower rate bounds of 
Xi, j/,-, and Zi respectively for channels A -> B,C -> D, and E -> F, and where 
the corresponding upper bounds are x[, y-, and z-. 

Is there a PSM schedule that is adequate for these requirements and uses only 
these modes? It should be clear that we may legitimately restrict attention to 
schedules that start with Mx from time 0 to time ix, then switch to mode M2 for 
a duration of t2, and end with mode M3 for a duration of t3. Such a schedule is 
adequate for these requirements if and only if the following seven inequalities are 

satisfied: 

(1-3) 0 < U, (for i = 1, 2, 3) 

(4) h + 12 + h < 1 

(5) xiti + x2t2 + x3t3 > LAB 

(6) yih + y2t2 + y3t3 > LCD 

(7) 2Ti*i + z2t2 + z3t3 > LEF 

It is easy to imagine adding various terms to these inequalities to allow for time 

to switch modes, initial latencies, etc. 

Note that the upper bounds are not used in this calculation. They are relevant 
to implementation requirements, because achieving a given lower rate bound 
on one channel may depend upon assuming an upper bound on the rate at 
which a competing channel is being used. Also, the upper bounds give a better 
description of the running system in a way that is quite relevant when questions 
arise concerning how one might add tasks. A nonlinear problem would arise if we 
did not take the Ws to be constants, but variables meeting some extra constraints. 
This might be desirable if, for instance, we allow rate interpolation as mentioned 
above, or in other cases when a large class of feasible modes can be conveniently 

described parametrically. 
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One cannot expect to solve an instance of the schedulability problem as stated 
above unless one knows which message transmission modes are feasible. It is 
informative to consider the following precise mathematical problem, derived by 
stipulating a finite set of feasible modes and considering only PSM schedules that 
use only modes from that set. The finitely constrained schedulability problem (for 
Packet Stream Analysis) is then this: given a simple requirement set Req and 
a finite set M of message transmission modes, is there a PSM schedule that is 
adequate for Req and uses only modes from M? 

The key idea of the following assertion is the same as in the example above: 

Theorem 1 There is an  algorithm which decides the finitely  constrained 
schedulability problem for Packet Stream Analysis. 

Proof. Suppose Req = {Ri,...,Rq} is a simple requirement set and M = 
{Mi,... ,Mm} is a finite set of modes. Enumerate in increasing order as xi < 
x2 < ... < xp all numbers occurring as ready times or deadlines in Req. If a 
PSM schedule S is adequate for Req and 1 < i < p, then one can rearrange and 
recombine the mode usage by S between X{ and xt+1 so that no mode is used more 
than once on this interval, while preserving the adequacy of the schedule. In fact, 
this schedulability problem is equivalent to the existence of a solution to the set 
of linear inequalities constructed using variables t{j (for 1 < i < p and 1 < j < m) 
to stand for the amount of time mode Mj is used between x,- and x,+1 and having 
inequalities of three classes: first, Uj > 0, (for 1 < i < p and 1 < j < m), 
second, for 1 < i < p, 

and third, for each R in Req, 

b     m 

i=a j=l 

where L is the length of R, xa is the ready time of R, Xb is the deadline of R, and 
ctj is the minimum rate guaranteed by Mj for the channel of R. 
Q. E. D. 

This proof is mathematically valid in any case, but the schedules it implicitly 
produces are reasonable only if one makes use of the assumption mentioned above 
about the possibility of padding. 
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3.4.6 Summary of Packet Stream Analysis 

This approach does seem to provide an informative description of an important 
class of real problems. Especially interesting is the idea that it is helpful to think 
of network capacity in terms of feasible message transmission modes. Analogues 
of this notion might be relevant to other suggestions for analytical frameworks. 
Even if the only practical alternatives are the extremes of blasting and very low 
rate regulated transmission, this approach might still be useful in establishing 

guarantees for complex or somewhat dynamic data flow patterns. 

The finitely constrained schedulability problems generated by a brute force ap- 
plication of Packet Stream Analysis may be quite useful for small systems or for 
restricted parts of larger systems (perhaps looking at one horizontal or vertical 
line). Larger problems may be mathematically tractable if approximated by linear 
programming problems using only a reasonable number of modes, but the validity 
of schedules generated as solutions to large systems of simultaneous constraints 
would be somewhat suspect. They might be hard to understand, and hence hard 
to work with or even to trust. Certainly the robustness of solutions in the lace 
of inaccuracy of the input parameters would need to be carefully analyzed. Some 
structured way of applying the theory (perhaps hierarchically) is desirable if one 
is to be able to analyze potential system modifications easily. If one does not use 
it as a generator of schedules, but as an analytical framework, then Packet Stream 
Analysis might provide theoretical justification to more immediately intelligible 

scheduling techniques. 

3.5 DISCRETE DEMAND 

Here we present a notion of "discrete demand" that can be used to state resource 
requirements. The discrete demand will generally be slightly higher than the 
ordinary "utilization" for the same set of periodic requirements, but it has several 
potential advantages, especially when hierarchical approaches to subdividing the 
use of a communications network are to be considered. In particular, a justification 
of orthogonal mode scheduling requires a connection of an analysis of the lines 
to an analysis of the whole backplane. This is a second example of the general 
"pragmatic" strategy mentioned in Section 1.2. Whereas the development above 
of packet stream analysis involves a new suggestion for how to measure the 
capabilities of a communications network, discrete demand is proposed here as 
a more appropriate way to measure the requirements of applications. 
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In this subsection we first review an ordinary definition of utilization, summarize 
its basic role in giving schedulability guarantees, and point out some intrinsic 
drawbacks to its use for our purposes. Next we present the definition of discrete 
demand, which requires only a small modification of the definition of utilization. 
The discrete demand is stated in terms of a parameter (called At) that stands for 
the length of a relatively short interval of time. We then derive an estimate in 
terms of At for how much bigger the discrete demand can be than the ordinary 
utilization. Finally, we discuss how the notion of discrete demand alleviates some 
of the drawbacks of the ordinary notion of utilization in our context. 

3.5.1 Utilization 

We recall for comparison a common version of the definition of utilization. This 
definition is given for one arbitrary resource and any number of periodic tasks. In 
particular, it applies to the periodic message tasks mentioned in the discussion of 
the network subdivision approach (Section 3.2). A periodic task T is modelled by 
a period P, a ready time R, a length L and a deadline D. The length represents 
the amount of time required to complete the task, assuming the task has complete 
use of the resource. We also assume that 

R< R + L < D, 

and that D < P (although this may fail in pipelined systems). For each iteration 
of T, call the interval from the task's release time to its deadline a liveness interval 
of T. Each liveness interval of T will have length D — R. The utilization U(T) is 
defined by 

U(T) = L/(D -R). 

The utilization of a set of periodic tasks is just the sum of their individual 
utilizations. 

Much work in the field of single resource scheduling theory is devoted to establish- 
ing that low utilization is a sufficient condition for a task set to be schedulable, 
often with extra assumptions about the task set and/or special nice properties 
guaranteed for an adequate derived schedule. A typical case would be when the 
tasks are assumed to be completely interruptible and the schedule is required to be 
based upon fixed priorities. See the paper of Malcolm and Zhao (Malcolm, 1994) 
for a relevant survey. 

These sufficient bounds are not usually necessary. Cases where a task set with 
utilization greater than 1 is schedulable are usually neglected.   There are two 
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different reasons why cases of utilization greater than 1 are of interest to us. 
Firstly, the treatment of the entire backplane as a single resource means that 
simultaneous heavy use of two completely disjoint channels can't be considered 
by the theory. One might try to introduce some location information into the 
notion of utilization, and we do not reject this approach entirely. In fact the 
notion of feasible patterns is a step in that direction. But we are looking here 
for a simpler theory, especially because we may actually treat subnetworks (like a 

line) as single resources for certain time intervals. 

Consider secondly a task set which contains several tasks for which D - R is very 
small, but whose utilization is only slightly less than 1. Such a task set might 
be easy to schedule, even though it has utilization much greater than 1, if the 
intervals from release to deadline of the various tasks in it are all well separated. 
This is significant for applications of interest, because the relative placement of 
message requirements within each overall processing period is pretty well known 

in advance. 

Another obstacle to the use of this definition of utilization is that it works less 
well when the periods of the various tasks are not commensurate or have a large 
least common multiple. Finally, there are some difficulties integrating periodic 
hard constraints with aperiodic tasks and periodic tasks with soft constraints. 
For instance, some soft real-time constraints are better thought of as bandwidth 
requirements than multiple deadlines. 

3.5.2 Simple Discrete Demand 

It is convenient to think in terms of the following kind of contract between a 
scheduler and a task. There are agreed upon a fixed length of time At and a 
fraction d, with 0 < d < 1. For convenience, let us say that an aligned time 
quantum means an interval of time from nAt to (n + l)At, for any nonnegative 
integer n. The scheduler agrees that the task will be given an opportunity to 
use the resource for at least dAt units of time on each and every aligned time 
quantum. It is not assumed that the distribution of time actually allotted by 
the scheduler is periodic or regular, except that it should be distributed smoothly 
enough to be effectively usable. That is, it is assumed that the task can, on each 
iteration, actually use any time allotted it after its release time for that iteration 

and up to such time as it has completed that iteration. 

The (simple) discrete demand Q(T, At) of a periodic task T with time quantum 
At is the least d for which such a contract suffices to guarantee that every deadline 
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of the repeated instances of T will be met. The discrete demand of a task set is the 
sum of the discrete demands of its elements. Since we are assuming R-\- L < D, it 
should be clear that Q(T, At) is well defined and has a value somewhere between 
0 and 1. 

We now estimate the discrete demand in a way which allows it to be compared to 
the ordinary utilization. The larger values for discrete demand result essentially 
from paying a price "up front" for possible edge effects. Assume that 3At < 
(D — R). In this case, each liveness interval of T will contain an interval which is 
a union of consecutive aligned time quanta and has length at least (D — R — 2At), 
no matter how the release time and deadline are positioned with respect to the 
multiples of At. This means that any fraction d suffices in the contract, as long 
as 

dx (D-R-2At) >L. 

This means that 

Q(T,At)<L/(D-R-2At). 

Thus, discrete demand gives a pretty good approximation to ordinary utilization 
as long as At is small compared to the least (D — R) of the task set. Note that we 
are not assuming that P is an integral multiple of A* for this particular calculation. 

Furthermore, for aperiodic tasks or tasks with soft real-time deadlines, it would 
be reasonable in designing systems to require that their requirements be expressed 
in terms of discrete demand. Discrete demand gives, in fact, a strong version of 
a bandwidth guarantee, because it establishes particular points of time at which 
bandwidth guarantees will be met. 

We have not addressed issues of task switching time or synchronization in dis- 
tributed systems, but it seems that if a task set has total discrete demand con- 
siderably less than 1, then a scheduler should be able to satisfy its demands 
and still maintain considerable run-time freedom about exactly how it doles out 
resource time. It just needs to make sure that certain commitments are met at 
each multiple of At. 

3.5.3 Time-dependent Discrete Demand 

In order to consider discrete demand in more detail, we add another argument, 
standing intuitively for which aligned time interval is current. This allows a 
better assignment of combined demand to a task set, even while still assuming 
the resource to be indivisible. If T is a periodic task, and I is any aligned time 
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quantum (for A,), then we define Q*(T, I, A,), the (time dependent) discrete 
demand of T on interval / with time quantum At rather brutally: 

(a) If / intersects any liveness interval of T, then 

Q\T, /, A«) = Q{T, At). 

(b) Otherwise, 
Q*(T, I, At) = 0. 

If Req is a set of periodic tasks, then we define 

(&(Req,I,At)=   J2   Q*(T,I,At). 
TeReq 

Finally, DQ(Req, At), the (total) quantized demand of Req with time quantum 
At, means the maximum of the Q$(Req, I) for all aligned time quanta I. 

Informally, to say that a set of periodic tasks has total quantized demand less 
than 1 is to say that for all aligned time quanta the total demand of all of the 
tasks is manageable, and thus it should be schedulable. 

If the no-corners assumption is met, as is assumed for orthogonal mode scheduling, 
then one can divide up the set of periodic tasks into a horizontal and a vertical 
subset. If, for every aligned time interval /, either the horizontal or the vertical 
subset has zero discrete demand, while the other has less than 1, then it is plausible 
that OMS can work. One may not actually want to switch modes as fast as At, 

but one may not need to either. 

3.5.4 The Choice of the Time Quantum 

We summarize some trade-offs concerning the size of At. 

• Larger At allow less overhead between aligned time quanta. 

• Larger At allow more flexibility and efficiency for scheduling algorithms 

within the aligned time quanta. 

• Smaller At mean that Q is closer to U. 

• Smaller At may mean that smaller message buffers are needed. 
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3.6 INTERFACES AND INTEGRATION 

From the point of view of an applications programmer using a mature real-time 
communications scheduling facility, there would be additional library calls avail- 
able that are like a more elaborate version of the extra calls available to a program- 
mer using a real-time operating system. These calls give both local and global 
directions to what the programmer might think of as an abstract entity called 
the communications scheduler. Local information controls the communication of 
data at certain points in the program. Some information about priority, delivery 
deadline, what to do in emergencies, etc. would be included over and above the 
stipulations necessary for an ordinary message based communications paradigm. 

The global directions amount to telling the communications scheduler to make 
certain assumptions about the overall message flow pattern. In the near term we 
expect the required information to be a product of an augmented partitioning and 
mapping activity, including a detailed algorithm data flow analysis. Preliminary 
analysis of feasibility would be required, which might be automated to various 
degrees. It seems clear that not all details can be hidden from the applications 
programmers using such a communications scheduling facility, even if higher level 
languages and improved MPP compiler technology might eventually alleviate the 
extra burden considerably. 

In making our network subdivision scheduling proposals progressively more spe- 
cific, we have already had to begin considering where the entities involved in 
providing services would be located and how they would interact at run time. 
These details will always be highly dependent upon the exact machine architec- 
ture and choice of operating system, etc. As a last resort (but probably first 
implemented!) services can be integrated into the applications processes them- 
selves. For uniformity and ease of use it is more desirable to have a server in the 
style of Mach for many services. But more efficiency could be gained by modifying 
the operating system and message passing software. Eventually some low level 
services, for instance, assuring a stipulated rate of transmission of a stream of 
packets, might be assisted by sophisticated router nodes or other hardware level 
mechanisms. 

Finally, as was touched on above, the communications scheduling component 
interacts with the other components of high performance computing at the quite 
different level of how performance requirements and guarantees are to be given. 
For instance, the Paragon developers might state that at most ten percent of 
the backplane message traffic is overhead from system control, synchronization 
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messages, and the like. This is not good enough for us, because that reasonable 
overhead fraction might be unfavorably distributed. Similarly, it is not good 
enough for a real-time operating system to guarantee that certain messages will 
be prepared and ready to be sent by certain times, because unexpectedly early 
transmission of certain messages could interfere with earlier deadlines. On the 
other hand, the kinds of guarantees that we require are not unreasonable. One 
of our current concerns is how to devise a set of performance questions about 
the Paragon that we can reasonably expect to get hard answers to and that 
are sufficient to allow us to devise a communications scheduling scheme with 

guaranteed performance. 
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SECTION 4 

CONCLUSION 

To successfully apply MPPs to real-time embedded applications, four essential 
components must be in place. Efficient processing and message passing will be 
needed to meet the size, weight, and power constraints of embedded applica- 
tions. System software support to schedule processing and communications will 
be needed to meet the real-time requirements. The communications scheduling 
component is presently missing from the real-time MPP research agenda. Com- 
mercial MPPs today have a tremendous amount of raw network capacity and the 
tendency is to assume that such high capacity translates into predictable commu- 
nications performance. This is a mistake as our experiences have shown, and it 
will become even less the case for message passing techniques that provide higher 
data rates than current commercial techniques. 

This paper has framed the communication scheduling problem and presented some 
of our initial work towards its solution. A variety of minor topics, especially relat- 
ing to scheduling of a single line of the backplane, have not been included. We have 
described a general hierarchical scheduling approach called network subdivision 
and a more specific idea relevant to certain applications called orthogonal mode 
scheduling. We have also suggested an analytical framework called packet stream 
analysis and a modification of the ordinary notion of utilization called discrete 
demand. 

These suggestions should be understood in terms of our overall goal to enhance 
the current state of the art to provide a combination of 

1. performance parameters on hardware and support software that are really 
measurable or predictable with a high degree of confidence, 

2. requirements parameters that adequately express the communications 
needs of target applications, and 

3. scheduling algorithms, protocols, and mathematical analysis that justify 
a translation of applications requirements into performance parameters 
that we can guarantee are sufficient. 
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Packet stream analysis is not yet a mature analytic framework, but it does seem 
to present a valid and informative treatment of a significant class of cases. Its 
applicability depends greatly upon whether the level of granularity it assumes 
is appropriate and how good a facility for regulated sending is available. It is 
desirable now to determine robust and useful message transmission modes and 
to integrate this mathematical model with some form of hierarchical scheduling 
methodology in the style of the network subdivision approach. 

The notion of discrete demand, especially in its time dependent form, may be a 
convenient way to justify versions of network subdivision, including the relatively 
intact transfer of some established scheduling theory. It also provides a more 
uniform treatment of hard and soft real-time requirements and helps get around 
problems regarding incompatible periods. There is a granularity issue here too: 
in some cases it may be difficult to find an acceptable value for the time quantum. 
Using time dependent discrete demand will require more detailed specification 
of the system than is thought desirable, for example, for some applications to 
uniprocessor scheduling of analysis based upon ordinary utilization. But achiev- 
ing sufficiently efficient use of the distributed resources of scalable MPP's may 
intrinsically require comparatively detailed specification and complex analysis. 

This is a relatively new area in terms of relevant published literature, and theo- 
retical work could be profitably pursued in many directions. But we feel that it 
is important to let the near-term course of theoretical development be strongly 
guided by the needs of producing realistic scalable MPP demonstrations, probably 
of signal processing applications. We are optimistic that our work so far can be 
extended and integrated to provide an adequate solution to the MPP communi- 
cations scheduling problem for such demonstrations. The outstanding problem 
in this regard is the difficulty of obtaining robust and sufficiently informative 
measures of the communications capacity of relevant combinations of hardware 

and underlying software. 

The longer term problem of providing a genuine communications scheduling ser- 
vice for scalable MPP's that enables complex systems to be designed, maintained 
and updated relatively easily is much more difficult. In fact, the tempting analogy 
of scheduling tasks on a single processor may be misleading in that the intrinsic 
complexity of massively parallel programs and machines may never allow as good 
a solution as one might expect can be achieved. It is nevertheless important to 
make as much progress as possible towards such a service. Otherwise communica- 
tions scheduling may become a critical impediment to the use of general purpose 
hardware and software for demanding real-time applications. 
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